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When buoyant fluid is released into the base of a crack in an elastic medium the crack 
will propagate upwards, driven by the buoyancy of the fluid. Viscous fluid flow in 
such a fissure is described by the equations of lubrication theory with the pressure 
given by the sum of the hydrostatic pressure of the fluid and the elastic pressures 
exerted by the walls of the crack. The elastic pressure and the widt,h of the crack arc 
further coupled by an integro-differential equation derived from the theory of 
infinitesimal dislocations in an elastic medium. The steady buoyancy-driven 
propagation of a two-dimensional fluid-filled crack through an elastic medium is 
analysed and the governing equations for the pressure distribution and the shape of 
the crack are solved numerically using a collocation technique. The fluid pressure in 
the tip of an opening crack is shown to be very low. Accordingly, a region of relatively 
inviscid vapour or exsolved volatiles in the crack tip is predicted and allowed for in 
the formulation of the problem. The solutions show that the asymptotic width of the 
crack, its rate of ascent and the general features of the flow are determined primarily 
by the fluid mechanics; the strength of the medium and the vapour pressure in the 
crack tip affect only the local structure near the advancing tip of the crack. When 
applied to the transport of molten rock through the Earth’s lithosphere by magma- 
fracture, this conclusion is of fundamental importance and challenges the 
geophysicist’s usual emphasis on the controlling influence of fracture mechanics 
rather than that of fluid rncchanics. 

1. Introduction 
Molten rock, or magma, produced in the upper regions of the Earth’s mantle 

ascends tens of kilometres through the overlying, cold and brittle lithosphere, driven 
by the buoyancy of the melt relative to the country rock through which it passes. It 
is accepted that an important mechanism for the transport of such magma is ascent 
through a series of fissures, or dykes, which are created by fluid-induced fracture and 
are held open by the fluid pressure. Evidence for this mechanism comes from field 
observations of the exposed remains of solidified dykes (Pollard & Muller 1976; 
McDonald et al. 1988; Reches & Fink 1988), from observations of seismic signals 
associated with the fracture of the country rock (Aki, Fehler & Das 1977; Shaw 
1980), and from the magnitude of the ascent velocities required to explain the size 
and mineralogy of solid fragments carried up with the melt (Carmichael et al. 1977 ; 
Spera 1980). 

Measurements of seismic velocities indicate that the melt initially collects in 
reservoirs a t  the base of the lithosphere. When the stress caused by the buoyancy of 



264 J .  R.  Lister 

the collected melt, and by any local tectonic stress, exceeds a critical valuc, a fissure 
is created in the walls of the reservoir and propagates upwards through the 
lithosphere, tapping the melt in the reservoir. Such a fissure may reach the Earth’s 
surface directly, giving rise to voluminous eruptions of ‘flood basalts ’. More 
commonly (such as in Hawaii), the dyke feeds into a storage chamber of magma, 
located a few kilometres below the Earth’s surface. Only a proportion of the magma 
is subsequently erupted through secondary dykes leading from the chamber to the 
surface. In  such cases, direct measurements of the flux of magma from the mantle 
and of the scale of the feeder dykes are difficult. An understanding of the dynamics 
of magma fracture and of flow through cracks in an elastic medium is consequently 
of considerable importance for the correct interpretation of solidified igneous 
intrusions and the development of models for the long-term evolution of the Earth’s 
crust and mantle. 

Many theoretical treatments of dykes have concentrated on the calculation of the 
stress field around a static fluid-filled crack and on the evaluation of the conditions 
under which the stress intensity a t  the edge of the crack exceeds the critical value for 
the material causing the crack to extend (e.g. Weertman 1971 ; Pollard & Holzhausen 
1979; Maaloe 1987 ; Rubin & Pollard 1987 ; Pollard 1988). In such static solutions the 
hydrostatic pressure in the fluid and the elastic pressure exerted by the walls of the 
crack are in balance. We note the result from Weertman (1971) that  the vertical 
extent of a fluid-filled fissure cannot exceed a certain value without causing the upper 
tip of the crack to propagate or the lower tip to  close. For geological parameters this 
value is of order a hundred metres and dykes of greater vertical extent will propagate 
upwards, the dominant pressure balance now being between the buoyancy force of 
the fluid and the viscous pressure drop along the dyke. This regime of dyke 
propagation has received much less attention and the controlling influence of the 
fluid dynamics has not been widely appreciated. (In contrast, a surface eruption 
through an established conduit of given width is usually described as a fluid- 
mechanical problem, e.g. Huppert et al. 1984.) 

In this paper we present solutions for the steady propagation of a two-dimensional 
fluid-filled fracture driven by buoyancy in an elastic medium. This problem was 
considered by Spence, Sharp & Turcotte (1987) (hereinafter referred to as SST) who 
found a solution only for a certain value of the non-dimensional critical stress 
intensity of the medium and concluded that the fracture mechanics near the crack 
tip determined the dimensions and rate of propagation of the crack. Here, howcvcr, 
we exhibit a family of solutions, one solution for each value of the critical stress 
intensity, and conclude that the fracture mechanics determines only the local 
structure of the crack tip, whereas the width and rate of propagation of the crack are 
determined by the fluid dynamics. I n  these solutions the fluid pressure in the crack 
tip has a weak negative singularity corresponding to the viscous resistance to flow 
into the narrow tip (Barenblatt 1962). Since magmas contain dissolved volatiles such 
as water and carbon dioxide (Anderson 1978), we argue that the crack tip will be 
occupied by volatiles exsolved by the low pressures there and we extend our 
calculations to include this possibility. 

The problem is formulated in $2 and the coupled equations governing the width 
of the crack and the fluid pressure are derived. In  $3 we present asymptotic analyses 
for the limiting case of small volatile content. The general problem and the 
asymptotic analyses are solved numerically using collocation schemes described in 
94. The asymptotic solutions are shown to be in agreement with limiting results from 
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FIGURE 1 .  Definition sketch. A two-dimensional crack propagates vert,ically through an elastic 
solid of density ps, shear modulus G and Poisson’s ratio v.  The tip of the crack is occupied by vapour 
of density py and viscosity pv ; the remainder is occupied by fluid of density p 1  and viscosity p,. The 
x and z coordinate systems are as shown. 

the general problem, thus providing a check on the accuracy of the numerical 
calculations. The results are discussed in 995 and 6. A more detailed discussion of the 
geophysical implications of the results will be given in Lister (1989). 

2. Formulation of the problem 
Consider a two-dimensional crack propagating into a uniform elastic solid (see 

figure 1). Let the solid have density ps, shear modulus G and Poisson’s ratio v. 
Let z be the vertical coordinate, zN( t )  the location of the crack tip and h(z , t )  the 
half-width of the crack. Suppose that the crack is occupied by a liquid of density 
pI( < p,) and viscosity pl in the semi-infinite region x < z,(t) and that the tip of the 
crack zo(t)  < z < zN(t) is occupied by vapour or gaseous volatiles of density p,( < pl )  
and viscosity pv( < pl). 

The liquid flow in the crack is driven by a total effective pressure p ,  derived from 
the body force -p ,g  on the liquid, the hydrostatic pressure - p s g z  in the solid and 
the non-hydrostatic component’ of pressure p ,  exerted by the walls of the crack due 
to the elastic deformation of the solid: 

(2.1) Pt = (P1 - P A  s z  + P, + const. 
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A similar expression applies in the region occupied by vapour but with p1 replaced by 
pv. Provided that ah/& < 1 the elastic pressure is given by 

(Weertman 1971) .  We assume that the crack is sufficiently narrow and the liquid 
viscosity sufficiently large that p1 h3(ah/az) (dp,/dz)/p; < 1. It follows that the liquid 
flow satisfies the conditions of lubrication theory and, consequently, that the 
variations in the width of the crack arc given by the horizontally averaged equation 
of continuity for Poiscuille flow 

- ah = --(h32) 1 a 
(2  < zn). at 3p, a Z  

Since the vapour is very much less viscous than the liquid, we may neglect dcnsity 
and pressure variations in the vapour and use pv 4 p1 to deduce that 

= psg ( x o  < z < ZN). & 
ax (2.4) 

We solve (2.1)-(2.4) subject to three boundary conditions. First, we assume that 
the liquid is injected into the crack a t  x = - 00 at a constant rate Q .  Since the elastic 
pressure gradient vanishes far from the crack tip, we deduce that h tends to a 
constant value h, as z - t -  co, where 

Secondly, wc assume that the timescale of the flow is sufficiently slow that the 
vapour in the crack tip is in thermodynamic equilibrium with the bulk liquid. The 
pressure in the vapour is equal, therefore, to the saturated vapour pressure for 
the fluids and the temperature concerned. I n  effect, this determines the location zo 
of the interface since the solutions show that if zN -zn is too small then the pressure 
in the crack tip will be undersaturated and more vapour will be evaporated or 
exsolved until the saturated pressure is attained. Conversely, if zN-zo is too large 
thcn vapour will condensc until the saturated pressure is attained. 

Thirdly, the stress immediately ahead of the crack tip must have a singularity of 
strength given by - p  - K/(2(zN-z) ) ; ,  where K is a material-dependent parameter 
called the critical stress-intensity factor (Irwin 1958). If the strength of the 
singularity were any smaller than this value then the crack would not propagate. 
Conversely, if the strength of the singularity were maintained at a larger value then 
the crack would propagate a t  about 40 % of the speed of sound in the solid (Anderson 
& Grew 1977) .  Such propagation speeds could not be maintained by a mechanism of 
fracture driven by viscous flow into the crack tip. The condition on the size of the 
singularity in the stress may be rewritten as 

l - v  
G 

h - - - K ( 2 ( z N - x ) ) +  ( z + x K - )  

using equation (28) of Erdelyi et al. (1954, p. 249). 
Since the flux into the crack is constant, we seek travelling-wave solutions which 

propagate a t  some fixcd speed c .  We define x = e t -z+z , (O) ,  substitute int,o (2.3) and 
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int'egrate once. As would be expected, we find from the boundary condition (2.5) that 
c = &/2h,. (The details of these manipulations are given by SST.) I n  the remaining 
equations we non-dimensionalize h, x, p and K with respect to the scales 

From now on all quantities will be dimensionless unless stated otherwise and we shall 
drop the suffix on the elastic pressure defined by (2.2). We obtain 

h - K(2X)i (x 4 l ) ,  (2.9) 

1 
h2 

p' = -- 1 (2.10) 

p = p0-Rx (X < zo), (2.11) 

where primes denote differentiation with respect to x,  R = p,/(p,-p,) and -p, is the 
dimensionless pressure by which the hydrostatic pressure in the solid a t  z = zN 
exceeds the saturated vapour pressure. I n  other words, po  is the (negative) elastic 
stress which needs to be exerted by the walls of the crack for the fluid pressure in the 
crack tip to be decreased from the solid hydrostatic value to the saturated vapour 
pressure of the liquid. It is assumed that the change in p ,  as the crack propagates to 
shallower depths is sufficiently slow that the problem may be treated as quasi-steady 
and p ,  may be taken as a prescribed constant. 

Equations (2.8)-(2.11) are sufficient to  solve forp(x), h(x) and xo as functions of the 
parameters K ,  R and p,. However, we first rewrite (2.8) and (2.9) in a form more 
suited to numerical solution. As described in SST, (2.8) may be inverted and 
integrated by parts to  yield 

(2.12a) 

where 

We then use k ( 5 ; s )  - -4(& for 5 % x to rewrite (2.9) as 

(2.126) 

(2.13) 

We note that geophysical parameters give K 4 1 and so we shall include solutions for 
the limit K = 0. 

A numerical scheme based on (2.10)-(2.13) will be described in $4. In  this scheme it 
is found convenient to specify xo as a parameter and to calculate p,. Solutions for a 
specified value of p ,  may be obtained by inverting the relationship between p ,  and 
so. I n  the following section we derive solutions for the asymptotic limit p ,  9 1 and 
deduce the limiting fprm of x,(p,) .  
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FIGI-RE 2. The integrals Iz (defined by (A 1) of the appendix) for ci = -$, 1 and 0. The perturbation 
Ahl of the crack width due to the pressure gradient -@’ in z < zo is given by ( & ) ~ x ~ l - ; ( x / x o ;  1 )  
for K = 0 and by (zo/2K2)~-l(z/z,,; 1) for K =+ 0. The integral I .  arises later in (4.5) during the 
formulation of the numerical scheme. 

X 

3. The limit p,, % 1 

If p ,  = - 00 then vapour cannot be exsolved and consequently xo = 0. When K =k 0 
we deduce from (2.9) and (2.10) that p - In x / 2 K 2  as x + 0. When K = 0 we deduce 
from (2.8), (2.10) and equation (28) of Erdelyi et al. (1954, p. 249) t*hat h - (?)$xiand 
p N - (g): x-i as x + 0. (Such singularities were also observed by Spence &, Sharp 1985 
for the propagation of non-buoyant cracks since they arise from a dominant balance 
in the crack tip between elastic and viscous forces.) For both K = 0 and K $: 0 there 
is a region of large negative pressure in the neighbourhood of x = 0. We expect, 
therefore, that if po is finite then vapour will be exsolved in this neighbourhood under 
the influence of the low pressures. In  the limit p,, 9 1 vapour is exsolved only in this 
neighbourhood and so the limit corresponds to x, 4 1. Thus we seek solutions which 
arc small perturbations A p  and Ah t o  the solutions @ and h” for xo = 0. 

It is convenient to let A p  = Apl+  Ap2 where Api = 0 in x < xo and Apl = 0 in 
x > x,,. Let Ah, and Ah2 be the elastic displacements due to  Apl and Ap2. From the 
asymptotic form of fi we see that @’ >> R in x < x,. We deduce from (2.11) that 
A p ;  N -p‘ and valculatc Ah, from the known form of j5‘. The details of the calculation 
are given in the appendix and thc results are shown in figure 2.  The functions Ap2 and 

-_ (x ’ xo). (3.la) 
1 

(i+ Ah, + Ah$ k2 
Ah, are then given by 1 

Api = 

(3.1b) 

J XO J o 
( 3 . l C )  
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If K =k 0 then Ah, -4 h" everywhere (see figure 2). Equation (3.1 c) suggests that  Ap2, 
and hence Ah,, are O(xk). Thus Ah, 4 Ah, 4 h" except near x = x,. Since the integrals 
on the left-hand sides of (3.lb) and ( 3 . 1 ~ )  are dominated by the contributions from 
x 9 xo, we may replace their lower limits by zero, neglect Ahl in (3.1 a) and linearize 
with respect to Ah2. After defining Ah, = xk$(x) and Ap2 = x i$ (x ) ,  we obtain 

(3.2a) 

(3.2b) 

( 3 . 2 ~ )  

If K = 0 then Ah, 2 O(h") in x < O(x , ) .  From (3 . la)  we infer large values of Ap2 
in this region. The appropriate scalings may be shown to be Api = (&)ix&'(s) and 
Ah2 = (y): xi $&s), where s = x /x , .  We use the asymptotic forms of fj and and write 
Ah, = (Y) ix$$ , (s )  to obtain 

( 3 . 3 ~ )  

(3.3 b) 

(3.3c) 

Numerical solutions of (3.2) and (3.3) will be presented in $5 and compared with 
limiting solutions of (2.10)-(2.13). We note here that the perturbations due to a small 
volume of vapour are different in form for K =k 0 and K = 0: for K + 0 the 
perturbation is much smaller than h" but extends over an 0 ( 1 )  region; for K = 0 the 
perturbation is O(h") but extends over a very small region. The asymptotic 
relationships between p ,  and x,  as x, + 0 are 

lnx,+c (K =l 0), (3.4) 
1 

Po Z w O )  - 
where c is a constant given by the behaviour of$  for each K ,  and 

Po 27x0) + AP,(XO) - - ( 243x, r (3+$(1 ) )  ( K = O ) .  (3.5) 

4. The numerical scheme 
We wish to solve (2.10)-(2.13) numerically. As indicated earlier, we will take x, as 

a given parameter and po  as a quantity to calculate. We first make the substitution 
x = tan2 y, 6 = tan2 7 in order to  remove the square-root singularities in the 
integrands of (2.12a) and (2.13) and to transform the range of integration onto the 
finite interval (0 , ;~ ) .  From (2.9) and (2.10) we see that p' N 1/2K2x as x+O when 
x, = 0 and K + 0. Further, by writing (2.8) as 
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we see that p’ - - l/nx2 as x-t 00. (Higher-order terms are derived by SST.) These 
limiting forms for p‘ suggest making the substitution f = p’x(x+ 1). In terms of the 
new variables 

*[f(T)d.r+K 71: = 0, (4.3) 

(4.4) 

where X(y ; y)  = ( 2  cot r / n )  k(tan2 q ;  tan2y). The unknowns f and h are smooth 
polynomic functions of y except when K = 0 and x,, = 0 in which case f - y-3 and 
I& - y+ as y+o. 

SST approximated f by a cosine series 

n 

i-0 

f = c ai cos (2 iy ) ,  

which allowed them to evaluate the right-hand side of (4.2) analytically. They 
considcred only K + 0 and x, = 0 for which case it may be shown that the error in 
the approximation is (Carslaw 1930). However, the cosine representation leads 
to a number of difficulties: if K = 0 and xo = 0 then the singularity in f causes the 
wror to deteriorate to O(n-4); if x, =+ 0 then i t  is difficult to  apply (2.11); and if the 
approximation is used only in the interval x 2 x, > 0 then (4.2) can no longer be 
evaluatcd analytically. 

We choose, instcad, to approximate f by a piecewise-linear function defined by the 
values A. = f(cx,) off at n+ 1 evenly spaced points yo = tan-lxk, yl,. . . , ya = in. For 
the special case xo = 0, K = 0 we approximate g = fqi by a pieccwise-linear function 
defined by values g,. The error in the approximation is O(n-2)  and we note that it 
would be easy to  generalize the method to use a cubic-spline approximation with 
error O( nP4). 

Substituting (2.10), (2.11) and the approximation for f into (4.2) we obtain 

(4.5) 

where the h,(y) are integrals of X multiplied by simple functions of 71 and are 
indcpendent off .  The integral in (4.5) is evaluated in the Appendix and the values 
of h, at a given yI may be evaluated by a simple quadrature scheme. Equations (4.3) 
and (4.4) reduce to linear algebraic equations in thef t  (or gi). We determine thc 
unknowns f i  (or gi )  by taking (4.5) evaluated at y = yl, . . . , ya-l together with (4.3). 
If x, > 0 we also cvaluate (4.5) at y = yo, if x, = 0 and K =k 0 we usef, = BK2 and if 
2, = 0 and K = 0 we use go = (&);. This set of n + 1 equations is solved for the n + 1 
unknowns by a variant of Newton’s method which incorporates step-halving to 
ensure that the norm of the residual error decreases. The shape of the crack, the 
pressure distribution and p ,  are then readily calculated. 

It was found that n = 100 was sufficient to ensure an accuracy of one part in lo4 
in all the quantities calculated. The values of h, wcre calculated numerically to within 
one part in lo6. Newton’s method was found to converge rapidly in a t  most ten or 
so iterations. even from quite arbitrary initial guesses. Quasi-Newton methods and 
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FIGURE 3. The variation of the shape of the crack with K for q, = 0. 

X 

the minimization of the norm of the residual error, though requiring less cffort per 
iteration, were found to require many more iterations. 

The numerical scheme is easily adapted for the solution of the asymptot'ic 
problems (3.2) and (3.3) since the structure of the equations and the form of the 
solutions are similar to those of (2.10), (2.12) and (2.13). The chief difference between 
the schemes lies in the use of ( 3 . 2 ~ )  or ( 3 . 3 ~ )  instead of (2.10) to derive the equations 
analogous to (4.5). We note from (3.2a, c )  that $' - 1/ 8/nK5x as x+O. 

5. Results 
The first problem to consider is that  in which xo = 0 and the crack is completely 

occupied by fluid. Numerical solutions to (2.10), (2.12) and (2.13) were found for all 
values of K and some of the calculated crack profiles are shown in figure 3. Each 
profile exhibits a bulbous nose a t  z z 1 and a slight neck at x w 5 and rapidly 
asymptotes to h = 1 as x-+ 00. Thc size h,,, and location x,, of the maximum width 
of the crack are shown as functions of K in figures 4 and 5. The insensitivity of these 
quantities to  changes in K when K 4 1 reflects the fact that such changes are 
accommodated by local perturbations to h in x -4 1 and, consequently, the shape near 
z = x,,, is unaltered (cf. derivation of (3.3)). 

The existence of solutions for all values of K contrasts with the results of SST who 
found a solution only for K w 1.84955. Solutions for all values of K were obtained, 
however, for the related problem of fluid fracture in the absence of buoyancy (Spence 
& Sharp 1985). I n  the calculations of buoyancy-driven frachre by SST a cosine- 
series approximation to f was used, h was calculated from (4.2) and an objective 
function F was defined to be the sum of the squared errors in (2.10) evaluated at  M 
sample values of z. The objective F was minimized as a function of the first N 
coefficients of the cosine series, where N < M ,  and K was calculated from the resulting 
solution rather than being imposed upon it. 
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FIGURE 4. The variation of h,,, with K for r,, = 0. 
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FIGURE 5. The variation of xmsx with K for x,, = 0. 

The family of solutions found here all satisfy (2.10) and (2.12) and thus give F = 0 
in the limit M ,  N +  00. Calculations show that for finite N( < M )  the contours of F 
form a valley in which F x 0 and which corresponds to the solutions above. We 
suggest, therefore, that the solution found by SST was simply the point in the valley 
for which the discretization error associated with a finite value of N was smallest. The 
solution should, instead, have been made unique by specifying K and imposing the 
boundary condition (2.13). We note that the values of h,, and x,,, in our solution 
for K = 1.84955 agree with those calculated by SST. 

We now consider solutions of (2.10)-(2.13) in which xo > 0. The changes in the 
shape of the crack as xo increases from zero are shown in figure 6 for K = 1 and 
R = 2. For x,, < 0.5 the principal effect of the vapour in x < xo is to reduce the viscous 
pressures in the extreme tip of the crack and thus to reduce the elastic stress and the 
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FIGURE 6. The variation of the shape of the crack with x,, for K = 1 and R = 2. The solution for 
xo = 1.8 (dashed) is unphysical because there is a region where h < 0. 
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FIGURE 7. The variation of the shape of the crack with R for K = 1 and x,, = 1 .  The solution for 
R = 5 (dashed) is unphysical because t,here is a region where h < 0. 

size of the bulbous nose. For x 2 1,  however, the crack begins to neck-off near 
x = xo. This necking-off is caused partly by the hydrostatic pressure gradient, which is 
greater in the vapour than in tthe liquid (R > i ) ,  and partly by the low viscosity of 
the vapour, which cannot generate a viscous pressure gradient that would prevent 
the crack from closing. The influence of the hydrostatic pressure gradient may be 
seen in figure 7 which shows the increase in the tendency to neck-off as R increases 
with xo and K fixed. 
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As xo increases further, a critical value xt is attained beyond which h is negative 
in part of the region 0 < x < xo. It is found that x,*(K, R )  is an increasing function of 
K and a decreasing function of R, that  x$ > 0 for all values of K and R and that 
xt + 0 as R + co. I n  physical terms, the length of the column of vapour that can be 
supported by the medium increases as the strength of the medium increases or the 
buoyancy of the vapour decreases, is always greater than zero but becomes very 
small if the buoyancy of the vapour is very large. A useful qualitative comparison 
may be made with a finite, stationary crack lying in 0 < x < xo and in which there is 
a linear hydrostatic pressure p = Po-Rx. The width of the crack is given by h = 

( x ( x ~ - x ) ) ~ ( P ~ - ~ R ~ - ~ R ~ ~ )  (Erdelyi et al. 1954, pp. 24G248, equations 19, 21,25). If 
the stress intensity at x = 0 does not exceed K (i.e. Po-iRxo < K(2/xo)~) then the 
crack will close a t  x = xo (i.e. h < 0) if xo > 2(K/R)g (cf. Weertman 1971; Pollard & 
Muller 1976). 

Solutions for which xo > xz and h < 0 are clearly unphysical and we must examine 
our analysis of a propagating crack to see which assumptions have broken down 
in this regime. We note, first, that we have neglected the viscosity of the vapour by 
our use of (2.11) rather than an equation analogous to (2.10). If xo > x,*, however, this 
neglect is no longer valid since where h is sufficiently small the viscous pressures 
required to  drive vapour though the narrow gap will ensure that the crack does not 
close completely. If the viscosity of the vapour is included in thc model then solutions 
with large values of x,, can be found which obey the physical constraint h > 0. 

We note, secondly, however, that  if xo is 0(1 )  then p ,  is also O(1),  corresponding 
to the propagation of the crack through the level a t  which the hydrostatic pressure 
in the solid is equal to the saturated vapour pressure in the liquid. In  the absence of 

Fiacrte 8. The solut,ion q5 (solid line) of the perturbation equations (3.2) for K = 1. Also shown are 
( h ( z ; ~ ~ ) - h ( z ; O ) ) / x ~  for z,, = 0.025 (dashed line) and xu = 0.1 (dotted line) with K = 1 arid R = 2. 
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FIGURE 9. The solution q52 of t'he perturbation equat'ions (3.3) for K = 0. 

elastic stresses, liquid above this level would be supersaturated and, assuming the 
presence of nucleation sites, would exsolve vapour. As the crack propagates through 
this level, therefore, the required rate of vapour production from the liquid may be 
too large for the equilibrium between the vapour in the crack tip and the bulk liquid 
to be maintained and vapour bubbles are likely to be exsolved throughout the liquid. 
The subsequent upwards propagation of the vapour-liquid mixture is a problem of 
great geological interest and relates to volcanic eruptions of ' pyroclastic ' material 
such as pumice; i t  is, however, beyond the scope of the present analysis. 

Finally, we consider results from the limiting case x, 4 l , p ,  % 1. In figure 8 we 
show the solution of the perturbation equations (3.2) for K = 1, together with the 
difference betJween the solutions of (2.10)-(2.13) for x,, = 0 and some small values of 
x,,. The good agreement between the curves as xo + 0 provides a useful check on both 
the numerical scheme and the perturbation analysis. In figure 9 we show the solution 
of the perturbation equations (3.3) for K = 0. We find that q51(1) = -0.0547.. . , 
q&(1) = -0.704... and +(1) = -4.046 ... . We deduce that po - -1.792x;i and 
h(x,) - 0.694~: as x, + 0. The calculated values of p ,  and h(x,) are plotted against xo 
in figures 10 and 11. The agreement with the asymptotic values confirms the validity 
of (3.4) and (3.5). 

6. Discussion 
Our analysis of a buoyancy-driven fluid fracture has revealed a number of new 

physical phenomena. Confining attention, first, to  the solutions in which no vapour 
is present, we have found a family of solutions parameterized by the non-dimensional 
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FIGURE 10. The variation of p,, with zo for R = 2 (solid lines). The solution curves are terminated 
at the criticallvalue z$ at which h first becomes negative. (a) K = 0 with asymptotic solution 
p ,  - - 1.792z;j (dashed line). ( b )  K = I with asymptotic solution p ,  - glnzo+2.50 (dashed line). 

stress intensity of the medium. Each member of this family has the same asymptotic 
width, which is prescribed by the flow rate into the base of the crack and is 
independent of the strength of the medium. The conclusion follows that the width 
and rate of propagation of the crack are determined by the fluid mechanics a t  depth 
and, in  particular, by the geometry of the source reservoir feeding the crack and the 
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FIQURE 11. The variation of 4o = h(r,) with xo for R = ? (solid lines). The asymptotic solutions 
are h, - 0.694~8 for K = 0 and h, - (22,)s for K = 1 (dashed lines). 

supply rate that the reservoir can sustain. The properties of the medium affect only 
the structure near the tip of the crack. This picture is quite different from that 
deduced from the results of SST who, having found only one solution, deduced that 
a steadily propagating crack has a width and propagation rate which are determined 
by the strength of the medium. 

The solutions in which the crack is entirely filled with liquid exhibit a region of 
large negative pressures near the tip of the crack. This feature will be present near 
the crack tip in all solutions representing the extension of a liquid-filled crack (e.g. 
Spence & Sharp 1985) and corresponds to the large pressure gradients required to 
drive a viscous liquid into a narrow gap. We argue that vapour will be exsolved from 
the liquid under such low pressures and, consequently, that the presence of relatively 
inviscid volatiles will be a general phenomenon in the tips of extending cracks. 

A complementary observation to the above is that it is difficult for a liquid-filled 
crack to close completely since large elastic pressures are required to squeeze fluid out 
of a thin gap. This will be particularly relevant in geophysical applications since 
magmatic viscosities are large. The resistance to closure is a dynarnical effect. We 
conclude that models of the transport of magma (e.g. Weertman 1971 ; Maaloe 1987) 
which are based on elasticity theory and fluid statics can be quite misleading. In 
particular, we suggest that  the cessation of flow in a dyke is more likely to be related 
to a fall in pressure in the source reservoir and subsequent solidification of the slower 
flow than to the maximum volume of a hydrostatically pressurized crack. 

It is of some interest to apply our solutions for a propagating crack to  the ascent 
of magma through the Earth's lithosphere. (A more detailed discussion of this 
application may be found in Lister 1989.) We take as typical values G = 2 x lo1' Pa 
(Griggs, Turner & Heard 1960), v = 0.25, p1 = 2600 kg m-3, p = 100 Pa s (Itubin & 
Pollard 1987), Ap = 300 kg mP3 (SST), g = 10 m s-' (Dziewonski, Hales & Lapwood 
1975) and K = 4 x lo6 Pa mi (Atkinson 1984) and suppose that the crack has width 
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2h, = 1 m. We find that Q = 2.5 m2 s-l and c = 2.5 m s-l, which are in reasonable 
agreement with geological observations, and that the Reynolds number p1 ch,/p is 35 
and within the laminar regime. From (2.7) we find that 2 z 2.1 km, 1; M 6 x lo6 Pa 
andK z 3 x lo8 Pa mi. ThusK z 7 x 4 1 and we make the approximation K = 0. 
If wc assume that thc nose of the dyke is 5 km bclow the level a t  which the mclt is 
saturated with volatiles then pa w -23 and the dimensional value of x,, is about 
20 ern. As the dyke propagates towards the level a t  which the melt is saturated, the 
length of the vapour-filled tip increases and by the time the dyke is 500 m below the 
saturated level p ,  M -2 .3  and xo z 43 m. Above this level, rapid extension of a 
necked-off, vapour-driven crack tip or vesiculation in the melt will occur and limit 
the applicability of the numerical calculation. 

It is interesting to compare these calculations with those for a hotter and, 
consequently, less viscous melt. If ,u is reduced to  2 Pa  s and the flow rate is kept at 
2.5 m2 s-l then the crack width decreases to 30 em, 2 to 1 . 1  km, 1; to 3 x lo6 Pa and 
I? to lo8 Pa mi. The most significant effect of the decrease in the pressure scales 
associated with elastic deformation and viscous flow is that the size of the vapour- 
filled tip is reduced to 1.5 em at 5 km and 5.2 m at 500 m below the level of 
saturation. 

In conclusion, the analysis presented in this paper provides an approximate model 
for the ascent of magma through dykes in the Earth's lithosphere. It should be noted 
that. for simplicity, we have neglected the influence of temperature on the rheology 
of the mclt and the effects, discussed by Bruce & Huppert (1989), of melting and 
solidification a t  t,he dyke walls. We have also neglected the interaction with the 
stress-free surface of the Earth and variations in the flux of melt from the mantle. 
Thc incorporation of these and other effects into more complex models will provide 
challenges in the future for both fluid-dynamicists and geophysicists. 

I am grateful to I). J. Stevenson, D. L. Turcotte and J. S. Turner for their useful 
comments and suggestions on an earlier version of this manuscript. 

Appendix. Evaluation of integrals 
The integral 

where t = x/xo, arose in the calculation of Ahl in $ 3  for a = - 5  and - 1 and in (4.5) 
for a = 0. The case tc. = - 1 must be calculated numerically but is fortunately only 
needad for figure 2 since Ahl does not appear in (3.2). It is straightforward to 
calculate that  

The integral I-; may be integrated by parts twice, using a2k/3r2  = ( t / - r ) $ / ( T - t ) ,  to 
obtain 
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where L = In I(t:++i)/(ti-$)l. The latter integral may bc calculated by means of the 
substitution r = to6 to obtain 

(A 4) 
where c = t-f and the inverse tangent takes values in the interval (0, x). 
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